123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478 |
- <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
- <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" dir="ltr" lang="en"><head>
-
- <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
- <meta name="keywords" content="Bayes' theorem,1702,1761,1763,1774,A posteriori,Absolutely continuous,Abuse of notation,Athanasios Papoulis,Bayesian inference,Bayesian network">
- <link rel="shortcut icon" href="http://en.wikipedia.org/favicon.ico">
- <link rel="search" type="application/opensearchdescription+xml" href="http://en.wikipedia.org/w/opensearch_desc.php" title="Wikipedia (English)">
- <link rel="copyright" href="http://www.gnu.org/copyleft/fdl.html"><title>Bayes' theorem - Wikipedia, the free encyclopedia</title>
- <link rel="stylesheet" type="text/css" media="screen,projection" href="Bayes%27_theorem%20Files/main.css">
- <link rel="stylesheet" type="text/css" media="print" href="Bayes%27_theorem%20Files/commonPrint.css">
- <link rel="stylesheet" type="text/css" media="handheld" href="Bayes%27_theorem%20Files/handheld.css"><!--[if lt IE 5.5000]><style type="text/css">@import "/skins-1.5/monobook/IE50Fixes.css?64";</style><![endif]--><!--[if IE 5.5000]><style type="text/css">@import "/skins-1.5/monobook/IE55Fixes.css?64";</style><![endif]--><!--[if IE 6]><style type="text/css">@import "/skins-1.5/monobook/IE60Fixes.css?64";</style><![endif]--><!--[if IE 7]><style type="text/css">@import "/skins-1.5/monobook/IE70Fixes.css?64";</style><![endif]--><!--[if lt IE 7]><script type="text/javascript" src="/skins-1.5/common/IEFixes.js?64"></script>
- <meta http-equiv="imagetoolbar" content="no" /><![endif]-->
-
-
-
-
-
-
- <script type="text/javascript">/*<![CDATA[*/
- var skin = "monobook";
- var stylepath = "/skins-1.5";
- var wgArticlePath = "/wiki/$1";
- var wgScriptPath = "/w";
- var wgServer = "http://en.wikipedia.org";
- var wgCanonicalNamespace = "";
- var wgCanonicalSpecialPageName = false;
- var wgNamespaceNumber = 0;
- var wgPageName = "Bayes\'_theorem";
- var wgTitle = "Bayes\' theorem";
- var wgAction = "view";
- var wgArticleId = "49569";
- var wgIsArticle = true;
- var wgUserName = null;
- var wgUserGroups = null;
- var wgUserLanguage = "en";
- var wgContentLanguage = "en";
- var wgBreakFrames = false;
- var wgCurRevisionId = "128360312";
- /*]]>*/</script>
-
- <script type="text/javascript" src="Bayes%27_theorem%20Files/wikibits.js"><!-- wikibits js --></script>
- <script type="text/javascript" src="Bayes%27_theorem%20Files/index.php"><!-- site js --></script>
- <style type="text/css">/*<![CDATA[*/
- @import "/w/index.php?title=MediaWiki:Common.css&usemsgcache=yes&action=raw&ctype=text/css&smaxage=2678400";
- @import "/w/index.php?title=MediaWiki:Monobook.css&usemsgcache=yes&action=raw&ctype=text/css&smaxage=2678400";
- @import "/w/index.php?title=-&action=raw&gen=css&maxage=2678400";
- /*]]>*/</style><!-- Head Scripts -->
-
- <script type="text/javascript" src="Bayes%27_theorem%20Files/ajax.js"></script></head><body class="mediawiki ns-0 ltr page-Bayes_theorem">
- <div id="globalWrapper">
- <div id="column-content">
- <div id="content">
- <a name="top" id="top"></a>
- <div id="siteNotice"><script type="text/javascript" language="JavaScript">
- <!--
- document.writeln("\x3cdiv style=\"position:absolute; z-index:100; right:100px; top:-0px;\" class=\"metadata\" id=\"donate\"\x3e\n\x3cdiv style=\"text-align:right; font-size:80%\"\x3e\x3ci\x3eYour \x3cb\x3e\x3ca href=\"http://wikimediafoundation.org/wiki/Fundraising\" class=\"extiw\" title=\"wikimedia:Fundraising\"\x3econtinued donations\x3c/a\x3e\x3c/b\x3e keep Wikipedia running!\x3c/i\x3e\n\x3c/div\x3e\x3c/div\x3e\n");
- -->
- </script><div style="position: absolute; z-index: 100; right: 100px; top: 0px;" class="metadata" id="donate">
- <div style="text-align: right; font-size: 80%;"><i>Your <b><a href="http://wikimediafoundation.org/wiki/Fundraising" class="extiw" title="wikimedia:Fundraising">continued donations</a></b> keep Wikipedia running!</i>
- </div></div>
- </div> <h1 class="firstHeading">Bayes' theorem</h1>
- <div id="bodyContent">
- <h3 id="siteSub">From Wikipedia, the free encyclopedia</h3>
- <div id="contentSub"></div>
- <div id="jump-to-nav">Jump to: <a href="#column-one">navigation</a>, <a href="#searchInput">search</a></div> <!-- start content -->
- <p><b>Bayes' theorem</b> (also known as <b>Bayes' rule</b> or <b>Bayes' law</b>) is a result in <a href="http://en.wikipedia.org/wiki/Probability_theory" title="Probability theory">probability theory</a>, which relates the <a href="http://en.wikipedia.org/wiki/Conditional_probability" title="Conditional probability">conditional</a> and <a href="http://en.wikipedia.org/wiki/Conditional_probability" title="Conditional probability">marginal</a> <a href="http://en.wikipedia.org/wiki/Probability_distribution" title="Probability distribution">probability distributions</a> of <a href="http://en.wikipedia.org/wiki/Random_variable" title="Random variable">random variables</a>. In some interpretations of <a href="http://en.wikipedia.org/wiki/Probability" title="Probability">probability</a>, Bayes' theorem tells how to update or revise beliefs in light of new evidence <i><a href="http://en.wikipedia.org/wiki/A_posteriori" title="A posteriori">a posteriori</a></i>.</p>
- <p>The probability of an <a href="http://en.wikipedia.org/wiki/Event_%28probability_theory%29" title="Event (probability theory)">event</a> <i>A</i> conditional on another event <i>B</i> is generally different from the probability of <i>B</i> conditional on <i>A</i>. However, there is a definite relationship between the two, and Bayes' theorem is the statement of that relationship.</p>
- <p>As a formal <a href="http://en.wikipedia.org/wiki/Theorem" title="Theorem">theorem</a>, Bayes' theorem is valid in all interpretations of probability. However, <a href="http://en.wikipedia.org/wiki/Frequentist" title="Frequentist">frequentist</a> and <a href="http://en.wikipedia.org/wiki/Bayesian_probability" title="Bayesian probability">Bayesian</a>
- interpretations disagree about the kinds of things to which
- probabilities should be assigned in applications: frequentists assign
- probabilities to random events according to their frequencies of
- occurrence or to subsets of populations as proportions of the whole;
- Bayesians assign probabilities to propositions that are uncertain. A
- consequence is that Bayesians have more frequent occasion to use Bayes'
- theorem. The articles on <a href="http://en.wikipedia.org/wiki/Bayesian_probability" title="Bayesian probability">Bayesian probability</a> and <a href="http://en.wikipedia.org/wiki/Frequency_probability" title="Frequency probability">frequentist probability</a> discuss these debates at greater length.</p>
- <table id="toc" class="toc" summary="Contents">
- <tbody><tr>
- <td>
- <div id="toctitle">
- <h2>Contents</h2>
- <span class="toctoggle">[<a href="javascript:toggleToc()" class="internal" id="togglelink">hide</a>]</span></div>
- <ul>
- <li class="toclevel-1"><a href="#Statement_of_Bayes.27_theorem"><span class="tocnumber">1</span> <span class="toctext">Statement of Bayes' theorem</span></a></li>
- <li class="toclevel-1"><a href="#Derivation_from_conditional_probabilities"><span class="tocnumber">2</span> <span class="toctext">Derivation from conditional probabilities</span></a></li>
- <li class="toclevel-1"><a href="#Alternative_forms_of_Bayes.27_theorem"><span class="tocnumber">3</span> <span class="toctext">Alternative forms of Bayes' theorem</span></a>
- <ul>
- <li class="toclevel-2"><a href="#Bayes.27_theorem_in_terms_of_odds_and_likelihood_ratio"><span class="tocnumber">3.1</span> <span class="toctext">Bayes' theorem in terms of odds and likelihood ratio</span></a></li>
- <li class="toclevel-2"><a href="#Bayes.27_theorem_for_probability_densities"><span class="tocnumber">3.2</span> <span class="toctext">Bayes' theorem for probability densities</span></a></li>
- <li class="toclevel-2"><a href="#Abstract_Bayes.27_theorem"><span class="tocnumber">3.3</span> <span class="toctext">Abstract Bayes' theorem</span></a></li>
- <li class="toclevel-2"><a href="#Extensions_of_Bayes.27_theorem"><span class="tocnumber">3.4</span> <span class="toctext">Extensions of Bayes' theorem</span></a></li>
- </ul>
- </li>
- <li class="toclevel-1"><a href="#Examples"><span class="tocnumber">4</span> <span class="toctext">Examples</span></a>
- <ul>
- <li class="toclevel-2"><a href="#Example_.231:__Conditional_probabilities"><span class="tocnumber">4.1</span> <span class="toctext">Example #1: Conditional probabilities</span></a>
- <ul>
- <li class="toclevel-3"><a href="#Tables_of_occurrences_and_relative_frequencies"><span class="tocnumber">4.1.1</span> <span class="toctext">Tables of occurrences and relative frequencies</span></a></li>
- </ul>
- </li>
- <li class="toclevel-2"><a href="#Example_.232:__Drug_testing"><span class="tocnumber">4.2</span> <span class="toctext">Example #2: Drug testing</span></a></li>
- <li class="toclevel-2"><a href="#Example_.233:__Bayesian_inference"><span class="tocnumber">4.3</span> <span class="toctext">Example #3: Bayesian inference</span></a></li>
- <li class="toclevel-2"><a href="#Example_.234:_The_Monty_Hall_problem"><span class="tocnumber">4.4</span> <span class="toctext">Example #4: The Monty Hall problem</span></a></li>
- </ul>
- </li>
- <li class="toclevel-1"><a href="#Historical_remarks"><span class="tocnumber">5</span> <span class="toctext">Historical remarks</span></a></li>
- <li class="toclevel-1"><a href="#See_also"><span class="tocnumber">6</span> <span class="toctext">See also</span></a></li>
- <li class="toclevel-1"><a href="#References"><span class="tocnumber">7</span> <span class="toctext">References</span></a>
- <ul>
- <li class="toclevel-2"><a href="#Versions_of_the_essay"><span class="tocnumber">7.1</span> <span class="toctext">Versions of the essay</span></a></li>
- <li class="toclevel-2"><a href="#Commentaries"><span class="tocnumber">7.2</span> <span class="toctext">Commentaries</span></a></li>
- <li class="toclevel-2"><a href="#Additional_material"><span class="tocnumber">7.3</span> <span class="toctext">Additional material</span></a></li>
- </ul>
- </li>
- </ul>
- </td>
- </tr>
- </tbody></table>
- <script type="text/javascript">
- //<![CDATA[
- if (window.showTocToggle) { var tocShowText = "show"; var tocHideText = "hide"; showTocToggle(); }
- //]]>
- </script>
- <p><a name="Statement_of_Bayes.27_theorem" id="Statement_of_Bayes.27_theorem"></a></p>
- <h2><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=1" title="Edit section: Statement of Bayes' theorem">edit</a>]</span> <span class="mw-headline">Statement of Bayes' theorem</span></h2>
- <p>Bayes' theorem relates the conditional and marginal probabilities of <a href="http://en.wikipedia.org/wiki/Stochastic_process" title="Stochastic process">stochastic</a> <a href="http://en.wikipedia.org/wiki/Event_%28probability_theory%29" title="Event (probability theory)">events</a> <i>A</i> and <i>B</i>:</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/246afc51d522fc2830a4e2ab6a52459d.png" alt="\begin{align} P(A|B) & = \frac{P(B | A)\, P(A)}{P(B)} \\ & \propto L(A | B)\, P(A) \end{align}"></dd>
- </dl>
- <p>where <i>L</i>(<i>A</i>|<i>B</i>) is the <a href="http://en.wikipedia.org/wiki/Likelihood_function" title="Likelihood function">likelihood</a> of <i>A</i> given fixed <i>B</i>. Although in this case the relationship <span class="texhtml"><i>P</i>(<i>B</i> | <i>A</i>) = <i>L</i>(<i>A</i> | <i>B</i>)</span>, in other cases <a href="http://en.wikipedia.org/wiki/Likelihood_function" title="Likelihood function">likelihood</a> <i>L</i> can be multiplied by a constant factor, so that it is proportional to, but does not equal <a href="http://en.wikipedia.org/wiki/Probability" title="Probability">probability</a> <i>P</i>.</p>
- <p>Each term in Bayes' theorem has a conventional name:</p>
- <ul>
- <li>P(<i>A</i>) is the <a href="http://en.wikipedia.org/wiki/Prior_probability" title="Prior probability">prior probability</a> or <a href="http://en.wikipedia.org/wiki/Marginal_probability" title="Marginal probability">marginal probability</a> of <i>A</i>. It is "prior" in the sense that it does not take into account any information about <i>B</i>.</li>
- <li>P(<i>A</i>|<i>B</i>) is the <a href="http://en.wikipedia.org/wiki/Conditional_probability" title="Conditional probability">conditional probability</a> of <i>A</i>, given <i>B</i>. It is also called the <a href="http://en.wikipedia.org/wiki/Posterior_probability" title="Posterior probability">posterior probability</a> because it is derived from or depends upon the specified value of <i>B</i>.</li>
- <li>P(<i>B</i>|<i>A</i>) is the conditional probability of <i>B</i> given <i>A</i>.</li>
- <li>P(<i>B</i>) is the prior or marginal probability of <i>B</i>, and acts as a <a href="http://en.wikipedia.org/wiki/Normalizing_constant" title="Normalizing constant">normalizing constant</a>.</li>
- </ul>
- <p>With this terminology, the theorem may be paraphrased as</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/3e294d8052aa226062a1a1158be30079.png" alt="\mbox{posterior} = \frac{\mbox{likelihood} \times \mbox{prior}} {\mbox{normalizing constant}}"></dd>
- </dl>
- <p>In words: the posterior probability is proportional to the product of the prior probability and the likelihood.</p>
- <p>In addition, the ratio P(<i>B</i>|<i>A</i>)/P(<i>B</i>) is sometimes called the standardised likelihood, so the theorem may also be paraphrased as</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/9c1f50e099b3ae7e1ece4cb35ca21356.png" alt="\mbox{posterior} = {\mbox{standardised likelihood} \times \mbox{prior} }.\,"></dd>
- </dl>
- <p><a name="Derivation_from_conditional_probabilities" id="Derivation_from_conditional_probabilities"></a></p>
- <h2><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=2" title="Edit section: Derivation from conditional probabilities">edit</a>]</span> <span class="mw-headline">Derivation from conditional probabilities</span></h2>
- <p>To derive the theorem, we start from the definition of <a href="http://en.wikipedia.org/wiki/Conditional_probability" title="Conditional probability">conditional probability</a>. The probability of event <i>A</i> given event <i>B</i> is</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/a6df7814a46fc4c9670cc510b72bb318.png" alt="P(A|B)=\frac{P(A \cap B)}{P(B)}."></dd>
- </dl>
- <p>Likewise, the probability of event <i>B</i> given event <i>A</i> is</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/8b6c81124815aad54c91c42b3261165d.png" alt="P(B|A) = \frac{P(A \cap B)}{P(A)}. \!"></dd>
- </dl>
- <p>Rearranging and combining these two equations, we find</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/efaf8fda8a92eeb2d8cf70468c20ed5a.png" alt="P(A|B)\, P(B) = P(A \cap B) = P(B|A)\, P(A). \!"></dd>
- </dl>
- <p>This <a href="http://en.wikipedia.org/wiki/Lemma_%28mathematics%29" title="Lemma (mathematics)">lemma</a> is sometimes called the product rule for probabilities. Dividing both sides by Pr(<i>B</i>), providing that it is non-zero, we obtain Bayes' theorem:</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/f9fdf7c75c7f4ddae1140dd2a9e73714.png" alt="P(A|B) = \frac{P(B|A)\,P(A)}{P(B)}. \!"></dd>
- </dl>
- <p><a name="Alternative_forms_of_Bayes.27_theorem" id="Alternative_forms_of_Bayes.27_theorem"></a></p>
- <h2><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=3" title="Edit section: Alternative forms of Bayes' theorem">edit</a>]</span> <span class="mw-headline">Alternative forms of Bayes' theorem</span></h2>
- <p>Bayes' theorem is often embellished by noting that</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/07cf5446f48e526e1abcdb471e60089a.png" alt="P(B) = P(A\cap B) + P(A^C\cap B) = P(B|A) P(A) + P(B|A^C) P(A^C)\,"></dd>
- </dl>
- <p>where <i>A</i><sup><i>C</i></sup> is the <a href="http://en.wikipedia.org/wiki/Complement_%28set_theory%29#Absolute_complement" title="Complement (set theory)">complementary</a> event of <i>A</i> (often called "not A"). So the theorem can be restated as</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/b337da08b983c9e9c6f741d856b4b72c.png" alt="P(A|B) = \frac{P(B | A)\, P(A)}{P(B|A) P(A) + P(B|A^C) P(A^C)}. \!"></dd>
- </dl>
- <p>More generally, where {<i>A</i><sub><i>i</i></sub>} forms a <a href="http://en.wikipedia.org/wiki/Partition_of_a_set" title="Partition of a set">partition</a> of the event space,</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/daa4b03e8ea857a6957e4a1d0b8ef6b1.png" alt="P(A_i|B) = \frac{P(B | A_i)\, P(A_i)}{\sum_j P(B|A_j)\,P(A_j)} , \!"></dd>
- </dl>
- <p>for any <i>A</i><sub><i>i</i></sub> in the partition.</p>
- <p>See also the <a href="http://en.wikipedia.org/wiki/Law_of_total_probability" title="Law of total probability">law of total probability</a>.</p>
- <p><a name="Bayes.27_theorem_in_terms_of_odds_and_likelihood_ratio" id="Bayes.27_theorem_in_terms_of_odds_and_likelihood_ratio"></a></p>
- <h3><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=4" title="Edit section: Bayes' theorem in terms of odds and likelihood ratio">edit</a>]</span> <span class="mw-headline">Bayes' theorem in terms of odds and likelihood ratio</span></h3>
- <p>Bayes' theorem can also be written neatly in terms of a <a href="http://en.wikipedia.org/wiki/Likelihood_function" title="Likelihood function">likelihood</a> ratio Λ and <a href="http://en.wikipedia.org/wiki/Odds" title="Odds">odds</a> <i>O</i> as</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/6aa65315e6ae2da1b417789e43b4eb72.png" alt="O(A|B)=O(A) \cdot \Lambda (A|B)"></dd>
- </dl>
- <p>where <img class="tex" src="Bayes%27_theorem%20Files/81be09df6b27e9b3d3ee7c8e4e6ced85.png" alt="O(A|B)=\frac{P(A|B)}{P(A^C|B)} \!"> are the <i>odds</i> of <i>A</i> given <i>B</i>,</p>
- <p>and <img class="tex" src="Bayes%27_theorem%20Files/c4451387126a4c6a51739382cacb9e99.png" alt="O(A)=\frac{P(A)}{P(A^C)} \!"> are the odds of <i>A</i> by itself,</p>
- <p>while <img class="tex" src="Bayes%27_theorem%20Files/32146e2a0949cb320bfd837305e6c133.png" alt="\Lambda (A|B) = \frac{L(A|B)}{L(A^C|B)} = \frac{P(B|A)}{P(B|A^C)} \!"> is the likelihood ratio.</p>
- <p><a name="Bayes.27_theorem_for_probability_densities" id="Bayes.27_theorem_for_probability_densities"></a></p>
- <h3><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=5" title="Edit section: Bayes' theorem for probability densities">edit</a>]</span> <span class="mw-headline">Bayes' theorem for probability densities</span></h3>
- <p>There is also a version of Bayes' theorem for continuous
- distributions. It is somewhat harder to derive, since probability
- densities, strictly speaking, are not probabilities, so Bayes' theorem
- has to be established by a limit process; see Papoulis (citation
- below), Section 7.3 for an elementary derivation. Bayes's theorem for
- probability densities is formally similar to the theorem for
- probabilities:</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/402214a6b5fb1babe545afc206a96d92.png" alt="f(x|y) = \frac{f(x,y)}{f(y)} = \frac{f(y|x)\,f(x)}{f(y)} \!"></dd>
- </dl>
- <p>and there is an analogous statement of the law of total probability:</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/908da7e26f756ae79f5ac0bfce87c5ce.png" alt="f(x|y) = \frac{f(y|x)\,f(x)}{\int_{-\infty}^{\infty} f(y|x)\,f(x)\,dx}. \!"></dd>
- </dl>
- <p>As in the discrete case, the terms have standard names. <i>f</i>(<i>x</i>, <i>y</i>) is the joint distribution of <i>X</i> and <i>Y</i>, <i>f</i>(<i>x</i>|<i>y</i>) is the posterior distribution of <i>X</i> given <i>Y</i>=<i>y</i>, <i>f</i>(<i>y</i>|<i>x</i>) = <i>L</i>(<i>x</i>|<i>y</i>) is (as a function of <i>x</i>) the likelihood function of <i>X</i> given <i>Y</i>=<i>y</i>, and <i>f</i>(<i>x</i>) and <i>f</i>(<i>y</i>) are the marginal distributions of <i>X</i> and <i>Y</i> respectively, with <i>f</i>(<i>x</i>) being the prior distribution of <i>X</i>.</p>
- <p>Here we have indulged in a conventional <a href="http://en.wikipedia.org/wiki/Abuse_of_notation" title="Abuse of notation">abuse of notation</a>, using <i>f</i>
- for each one of these terms, although each one is really a different
- function; the functions are distinguished by the names of their
- arguments.</p>
- <p><a name="Abstract_Bayes.27_theorem" id="Abstract_Bayes.27_theorem"></a></p>
- <h3><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=6" title="Edit section: Abstract Bayes' theorem">edit</a>]</span> <span class="mw-headline">Abstract Bayes' theorem</span></h3>
- <p>Given two <a href="http://en.wikipedia.org/wiki/Absolutely_continuous" title="Absolutely continuous">absolutely continuous</a> probability measures <span class="texhtml"><i>P</i>˜<i>Q</i></span> on the probability space <img class="tex" src="Bayes%27_theorem%20Files/b9474d45d82accf03434710c10871795.png" alt="(\Omega, \mathcal{F})"> and a sigma-algebra <img class="tex" src="Bayes%27_theorem%20Files/6956beed6709f29c47056603dd448e37.png" alt="\mathcal{G} \subset \mathcal{F}">, the abstract Bayes theorem for a <img class="tex" src="Bayes%27_theorem%20Files/26afd73f8c17f310707120691ccc4a35.png" alt="\mathcal{F}">-measurable random variable <span class="texhtml"><i>X</i></span> becomes</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/bcb58d4f262347072d35dea4a65977dd.png" alt="E_P[X|\mathcal{G}] = \frac{E_Q[\frac{dP}{dQ} X |\mathcal{G}]}{E_Q[\frac{dP}{dQ}|\mathcal{G}]}">.</dd>
- </dl>
- <p>This formulation is used in <a href="http://en.wikipedia.org/wiki/Kalman_filtering" title="Kalman filtering">Kalman filtering</a> to find <a href="http://en.wikipedia.org/wiki/Zakai_equation" title="Zakai equation">Zakai equations</a>. It is also used in <a href="http://en.wikipedia.org/wiki/Financial_mathematics" title="Financial mathematics">financial mathematics</a> for change of <a href="http://en.wikipedia.org/wiki/Numeraire" title="Numeraire">numeraire</a> techniques.</p>
- <p><a name="Extensions_of_Bayes.27_theorem" id="Extensions_of_Bayes.27_theorem"></a></p>
- <h3><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=7" title="Edit section: Extensions of Bayes' theorem">edit</a>]</span> <span class="mw-headline">Extensions of Bayes' theorem</span></h3>
- <p>Theorems analogous to Bayes' theorem hold in problems with more than two variables. For example:</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/01b89e228d286117e3f007b0bc3b67c0.png" alt="P(A|B,C) = \frac{P(A) \, P(B|A) \, P(C|A,B)}{P(B) \, P(C|B)}"></dd>
- </dl>
- <p>This can be derived in several steps from Bayes' theorem and the definition of conditional probability:</p>
- <dl>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/0000c57867374dbd1b7837882c5f7e5c.png" alt="P(A|B,C) = \frac{P(A,B,C)}{P(B,C)} = \frac{P(A,B,C)}{P(B) \, P(C|B)} ="></dd>
- <dd><img class="tex" src="Bayes%27_theorem%20Files/2203d39e737f922023985141bee96496.png" alt="= \frac{P(C|A,B) \, P(A,B)}{P(B) \, P(C|B)} = \frac{P(A) \, P(B|A) \, P(C|A,B)}{P(B) \, P(C|B)} ."></dd>
- </dl>
- <p>A general strategy is to work with a decomposition of the <a href="http://en.wikipedia.org/wiki/Joint_probability" title="Joint probability">joint probability</a>,
- and to marginalize (integrate) over the variables that are not of
- interest. Depending on the form of the decomposition, it may be
- possible to prove that some integrals must be 1, and thus they fall out
- of the decomposition; exploiting this property can reduce the
- computations very substantially. A <a href="http://en.wikipedia.org/wiki/Bayesian_network" title="Bayesian network">Bayesian network</a>, for example, specifies a factorization of a <a href="http://en.wikipedia.org/wiki/Joint_distribution" title="Joint distribution">joint distribution</a>
- of several variables in which the conditional probability of any one
- variable given the remaining ones takes a particularly simple form (see
- <a href="http://en.wikipedia.org/wiki/Markov_blanket" title="Markov blanket">Markov blanket</a>).</p>
- <p><a name="Examples" id="Examples"></a></p>
- <h2><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=8" title="Edit section: Examples">edit</a>]</span> <span class="mw-headline">Stochastic Hoody-hoo</span></h2>
- <p><a name="Example_.231:__Conditional_probabilities" id="Example_.231:__Conditional_probabilities"></a></p>
- <h3><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=9" title="Edit section: Example #1: Conditional probabilities">edit</a>]</span> <span class="mw-headline">Blahbitty Bloohbitty Blee</span></h3>
- <p>Suppose there are blah blah blitty blah. Yada yada, blah blah bleepity Blee, yada blee blah yaditty yada ya. Blahbitty blah blah blech blah, blechitty blah yada yada ying yang yong. Foo bar baz, blah blah yaddity yada ya, blah blah blahbitty blah blah bloohbitty blee. Yada yada, blah blah bleepity Blee, yada blee blah yaditty yada ya. Blahbitty blah blah blech blah, blechitty blah yada yada ying yang yong. Foo bar baz, blah blah yaddity yada ya, blah blah blahbitty blah blah bloohbitty blee. Yada yada, blah blah bleepity Blee, yada blee blah yaditty yada ya. Blahbitty blah blah blech blah, blechitty blah yada yada ying yang yong. Foo bar baz, blah blah yaddity yada ya, blah blah blahbitty blah blah bloohbitty blee.</p>
- <h3><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=9" title="Edit section: Example #2: Conditional probabilities">edit</a>]</span> <span class="mw-headline">You are getting very sleepy...</span></h3>
- <p>Then you can yada yada bloopy blah. Yada yada, yada yada bleepity Blee, yada blee blah yaditty yada ya. Blahbloopy yada yada blech blah, blechitty blah yada yada ying yang yong. Foo bar baz, yada yada yaddity yada ya, yada yada blahbloopy yada yada bloohbloopy blee. Yada yada, yada yada bleepity Blee, yada blee blah yaditty yada ya. Blahbloopy yada yada blech blah, blechitty blah yada yada ying yang yong. Foo bar baz, yada yada yaddity yada ya, yada yada blahbloopy yada yada bloohbloopy blee. Yada yada, yada yada bleepity Blee, yada blee blah yaditty yada ya. Blahbloopy yada yada blech blah, blechitty blah yada yada ying yang yong. Foo bar baz, yada yada yaddity yada ya, yada yada blahbloopy yada yada bloohbloopy blee.</p>
- <h3><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=9" title="Edit section: Example #2: Conditional probabilities">edit</a>]</span> <span class="mw-headline">Verrrrry Sleeeeeepy.......</span></h3>
- <p>We find that blah blah blitty blah. blah blah, blah blah bleepity Blee, yada blee blah yaditty yada ya. Blahbitty blah blah blech blah, blechitty blah blah blah ying yang yong. Foo bar baz, blah blah yaddity yada ya, blah blah blahbitty blah blah bloohbitty blee. blah blah, blah blah bleepity Blee, yada blee blah yaditty yada ya. Blahbitty blah blah blech blah, blechitty blah blah blah ying yang yong. Foo bar baz, blah blah yaddity yada ya, blah blah blahbitty blah blah bloohbitty blee. blah blah, blah blah bleepity Blee, yada blee blah yaditty yada ya. Blahbitty blah blah blech blah, blechitty blah blah blah ying yang yong. Foo bar baz, blah blah yaddity yada ya, blah blah blahbitty blah blah bloohbitty blee. Blahbitty blah blah blech blah, blechitty blah blah blah ying yang yong. Foo bar baz, blah blah yaddity yada ya, blah blah blahbitty blah blah bloohbitty blee. blah blah, blah blah bleepity Blee, yada blee blah yaditty yada ya. Blahbitty blah blah blech blah, blechitty blah blah blah ying yang yong. Foo bar baz, blah blah yaddity yada ya, blah blah blahbitty blah blah bloohbitty blee. Blahbitty blah blah blech blah, blechitty blah blah blah ying yang yong. Foo bar baz, blah blah yaddity yada ya, blah blah blahbitty blah blah bloohbitty blee. blah blah, blah blah bleepity Blee, yada blee blah yaditty yada ya. Blahbitty blah blah blech blah, blechitty blah blah blah ying yang yong. Foo bar baz, blah blah yaddity yada ya, blah blah blahbitty blah blah bloohbitty blee.</p>
- <h3><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=9" title="Edit section: Example #2: Conditional probabilities">edit</a>]</span> <span class="mw-headline">Your eyelids are sooooo heavy.......</span></h3>
- <p>Blah blah blah</p>
- <p>Yada yada yada</p>
- <p>Blah blah</p>
- <p>Yada yada</p>
- <p>Blah</p>
- <p>Yada</p>
- <p>blah</p>
- <p>yada</p>
- <p>blah</p>
- <p>blah</p>
- <p>blah</p>
- <p>blah</p>
- <p>blah</p>
- <p>blah</p>
- <p>Zzzzz.............</p>
- <p><a name="See_also" id="See_also"></a></p>
- <h2><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=15" title="Edit section: See also">edit</a>]</span> <span class="mw-headline">See also</span></h2>
- <div class="references-small" style="-moz-column-count: 2;">
- <ul>
- <li><a href="http://en.wikipedia.org/wiki/Bayesian_inference" title="Bayesian inference">Bayesian inference</a></li>
- <li><a href="http://en.wikipedia.org/wiki/Bayesian_spam_filtering" title="Bayesian spam filtering">Bayesian spam filtering</a></li>
- <li><a href="http://en.wikipedia.org/wiki/Bogofilter" title="Bogofilter">Bogofilter</a></li>
- <li><a href="http://en.wikipedia.org/wiki/Conjugate_prior" title="Conjugate prior">Conjugate prior</a></li>
- <li><a href="http://en.wikipedia.org/wiki/Empirical_Bayes_method" title="Empirical Bayes method">Empirical Bayes method</a></li>
- <li><a href="http://en.wikipedia.org/wiki/Monty_Hall_problem" title="Monty Hall problem">Monty Hall problem</a></li>
- <li><a href="http://en.wikipedia.org/wiki/Occam%27s_razor" title="Occam's razor">Occam's razor</a></li>
- <li><a href="http://en.wikipedia.org/wiki/Prosecutor%27s_fallacy" title="Prosecutor's fallacy">Prosecutor's fallacy</a></li>
- <li><a href="http://en.wikipedia.org/wiki/Raven_paradox" title="Raven paradox">Raven paradox</a></li>
- <li><a href="http://en.wikipedia.org/wiki/Recursive_Bayesian_estimation" title="Recursive Bayesian estimation">Recursive Bayesian estimation</a></li>
- <li><a href="http://en.wikipedia.org/wiki/Revising_opinions_in_statistics" title="Revising opinions in statistics">Revising opinions in statistics</a></li>
- <li><a href="http://en.wikipedia.org/wiki/Sequential_bayesian_filtering" title="Sequential bayesian filtering">Sequential bayesian filtering</a></li>
- </ul>
- </div>
- <p><a name="References" id="References"></a></p>
- <h2><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=16" title="Edit section: References">edit</a>]</span> <span class="mw-headline">References</span></h2>
- <ol class="references"></ol>
- <p><a name="Versions_of_the_essay" id="Versions_of_the_essay"></a></p>
- <h3><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=17" title="Edit section: Versions of the essay">edit</a>]</span> <span class="mw-headline">Versions of the essay</span></h3>
- <ul>
- <li>Thomas Bayes (1763), "An Essay towards solving a Problem in the
- Doctrine of Chances. By the late Rev. Mr. Bayes, F. R. S. communicated
- by Mr. Price, in a letter to John Canton, A. M. F. R. S.", <i><a href="http://en.wikipedia.org/wiki/Philosophical_Transactions" title="Philosophical Transactions">Philosophical Transactions</a>, Giving Some Account of the Present Undertakings, Studies and Labours of the Ingenious in Many Considerable Parts of the World</i> 53:370–418.</li>
- <li>Thomas Bayes (1763/1958) "Studies in the History of Probability and
- Statistics: IX. Thomas Bayes' Essay Towards Solving a Problem in the
- Doctrine of Chances", <i><a href="http://en.wikipedia.org/wiki/Biometrika" title="Biometrika">Biometrika</a></i> 45:296–315. <i>(Bayes' essay in modernized notation)</i></li>
- <li>Thomas Bayes <a href="http://www.stat.ucla.edu/history/essay.pdf" class="external text" title="http://www.stat.ucla.edu/history/essay.pdf" rel="nofollow">"An essay towards solving a Problem in the Doctrine of Chances"</a>. <i>(Bayes' essay in the original notation)</i></li>
- </ul>
- <p><a name="Commentaries" id="Commentaries"></a></p>
- <h3><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=18" title="Edit section: Commentaries">edit</a>]</span> <span class="mw-headline">Commentaries</span></h3>
- <ul>
- <li><a href="http://en.wikipedia.org/wiki/George_Alfred_Barnard" title="George Alfred Barnard">G. A. Barnard</a>
- (1958) "Studies in the History of Probability and Statistics: IX.
- Thomas Bayes' Essay Towards Solving a Problem in the Doctrine of
- Chances", <i>Biometrika</i> 45:293–295. <i>(biographical remarks)</i></li>
- <li>Daniel Covarrubias. <a href="http://www.stat.rice.edu/%7Eblairc/seminar/Files/danTalk.pdf" class="external text" title="http://www.stat.rice.edu/~blairc/seminar/Files/danTalk.pdf" rel="nofollow">"An Essay Towards Solving a Problem in the Doctrine of Chances"</a>. <i>(an outline and exposition of Bayes' essay)</i></li>
- <li>Stephen M. Stigler (1982). "Thomas Bayes' Bayesian Inference," <i>Journal of the Royal Statistical Society</i>, Series A, 145:250–258. <i>(Stigler argues for a revised interpretation of the essay; recommended)</i></li>
- <li><a href="http://en.wikipedia.org/wiki/Isaac_Todhunter" title="Isaac Todhunter">Isaac Todhunter</a> (1865). <i>A History of the Mathematical Theory of Probability from the time of Pascal to that of Laplace</i>, Macmillan. Reprinted 1949, 1956 by Chelsea and 2001 by Thoemmes.</li>
- </ul>
- <p><a name="Additional_material" id="Additional_material"></a></p>
- <h3><span class="editsection">[<a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit&section=19" title="Edit section: Additional material">edit</a>]</span> <span class="mw-headline">Additional material</span></h3>
- <ul>
- <li>Pierre-Simon Laplace (1774). "Mémoire sur la Probabilité des Causes par les Événements", <i>Savants Étranges</i> 6:621–656; also <i>Œuvres</i> 8:27–65.</li>
- <li>Pierre-Simon Laplace (1774/1986). "Memoir on the Probability of the Causes of Events", <i>Statistical Science</i> 1(3):364–378.</li>
- <li>Stephen M. Stigler (1986). "Laplace's 1774 memoir on inverse probability", <i>Statistical Science</i> 1(3):359–378.</li>
- <li>Stephen M. Stigler (1983). "Who Discovered Bayes' Theorem?" <i>The American Statistician</i> 37(4):290–296.</li>
- <li>Jeff Miller et al. <a href="http://members.aol.com/jeff570/mathword.html" class="external text" title="http://members.aol.com/jeff570/mathword.html" rel="nofollow">Earliest Known Uses of Some of the Words of Mathematics (B)</a>. (<i>very informative; recommended</i>)</li>
- <li><a href="http://en.wikipedia.org/wiki/Athanasios_Papoulis" title="Athanasios Papoulis">Athanasios Papoulis</a> (1984). <i>Probability, Random Variables, and Stochastic Processes</i>, second edition. New York: McGraw-Hill.</li>
- <li>James Joyce (2003). <a href="http://plato.stanford.edu/entries/Bayes-theorem/" class="external text" title="http://plato.stanford.edu/entries/Bayes-theorem/" rel="nofollow">"Bayes' Theorem"</a>, <i><a href="http://en.wikipedia.org/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></i>.</li>
- <li><a href="http://www.inference.phy.cam.ac.uk/mackay/itila/" class="external text" title="http://www.inference.phy.cam.ac.uk/mackay/itila/" rel="nofollow">The on-line textbook: Information Theory, Inference, and Learning Algorithms</a>, by <a href="http://en.wikipedia.org/wiki/David_J.C._MacKay" title="David J.C. MacKay">David J.C. MacKay</a> provides an up to date overview of the use of Bayes' theorem in information theory and machine learning.</li>
- <li><a href="http://plato.stanford.edu/entries/bayes-theorem/" class="external text" title="http://plato.stanford.edu/entries/bayes-theorem/" rel="nofollow">Stanford Encyclopedia of Philosophy: Bayes' Theorem</a> provides a comprehensive introduction to Bayes' theorem.</li>
- <li><a href="http://en.wikipedia.org/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Eric W. Weisstein</a>, <i><a href="http://mathworld.wolfram.com/BayesTheorem.html" class="external text" title="http://mathworld.wolfram.com/BayesTheorem.html" rel="nofollow">Bayes' Theorem</a></i> at <a href="http://en.wikipedia.org/wiki/MathWorld" title="MathWorld">MathWorld</a>.</li>
- <li><i><a href="http://planetmath.org/encyclopedia/BayesTheorem.html" class="external text" title="http://planetmath.org/encyclopedia/BayesTheorem.html" rel="nofollow">Bayes' theorem</a></i> at <a href="http://en.wikipedia.org/wiki/PlanetMath" title="PlanetMath">PlanetMath</a>.</li>
- <li>Yudkowsky, Eliezer S. (2003), "<a href="http://yudkowsky.net/bayes/bayes.html" class="external text" title="http://yudkowsky.net/bayes/bayes.html" rel="nofollow">An Intuitive Explanation of Bayesian Reasoning</a>"</li>
- </ul>
- <!--
- Pre-expand include size: 1117 bytes
- Post-expand include size: 200 bytes
- Template argument size: 73 bytes
- Maximum: 2048000 bytes
- -->
- <!-- Saved in parser cache with key enwiki:pcache:idhash:49569-0!1!0!default!!en!2 and timestamp 20070505042040 -->
- <div class="printfooter">
- Retrieved from "<a href="http://en.wikipedia.org/wiki/Bayes%27_theorem">http://en.wikipedia.org/wiki/Bayes%27_theorem</a>"</div>
- <div id="catlinks"><p class="catlinks"><a href="http://en.wikipedia.org/wiki/Special:Categories" title="Special:Categories">Categories</a>: <span dir="ltr"><a href="http://en.wikipedia.org/wiki/Category:Probability_theory" title="Category:Probability theory">Probability theory</a></span> | <span dir="ltr"><a href="http://en.wikipedia.org/wiki/Category:Mathematical_theorems" title="Category:Mathematical theorems">Mathematical theorems</a></span></p></div> <!-- end content -->
- <div class="visualClear"></div>
- </div>
- </div>
- </div>
- <div id="column-one">
- <div id="p-cactions" class="portlet">
- <h5>Views</h5>
- <div class="pBody">
- <ul>
- <li id="ca-nstab-main" class="selected"><a href="http://en.wikipedia.org/wiki/Bayes%27_theorem" title="View the content page [ctrl-c]" accesskey="c">Article</a></li>
- <li id="ca-talk"><a href="http://en.wikipedia.org/wiki/Talk:Bayes%27_theorem" title="Discussion about the content page [ctrl-t]" accesskey="t">Discussion</a></li>
- <li id="ca-edit"><a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=edit" title="You can edit this page. Please use the preview button before saving. [ctrl-e]" accesskey="e">Edit this page</a></li>
- <li id="ca-history"><a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&action=history" title="Past versions of this page. [ctrl-h]" accesskey="h">History</a></li>
- </ul>
- </div>
- </div>
- <div class="portlet" id="p-personal">
- <h5>Personal tools</h5>
- <div class="pBody">
- <ul>
- <li id="pt-login"><a href="http://en.wikipedia.org/w/index.php?title=Special:Userlogin&returnto=Bayes%27_theorem" title="You are encouraged to log in, it is not mandatory however. [ctrl-o]" accesskey="o">Sign in / create account</a></li>
- </ul>
- </div>
- </div>
- <div class="portlet" id="p-logo">
- <a style="background-image: url(Bayes%27_theorem%20Files/wiki-en.png);" href="http://en.wikipedia.org/wiki/Main_Page" title="Visit the Main Page [ctrl-z]" accesskey="z"></a>
- </div>
- <script type="text/javascript"> if (window.isMSIE55) fixalpha(); </script>
- <div class="portlet" id="p-navigation">
- <h5>Navigation</h5>
- <div class="pBody">
- <ul>
- <li id="n-Main-page"><a title="Visit the main page [ctrl-z]" accesskey="z" href="http://en.wikipedia.org/wiki/Main_Page">Main page</a></li>
- <li title="Guides to browsing Wikipedia" id="n-Contents"><a href="http://en.wikipedia.org/wiki/Wikipedia:Contents">Contents</a></li>
- <li title="Featured content — the best of Wikipedia" id="n-Featured-content"><a href="http://en.wikipedia.org/wiki/Wikipedia:Featured_content">Featured content</a></li>
- <li id="n-currentevents"><a href="http://en.wikipedia.org/wiki/Portal:Current_events" title="Find background information on current events">Current events</a></li>
- <li id="n-randompage"><a href="http://en.wikipedia.org/wiki/Special:Random" title="Load a random page [ctrl-x]" accesskey="x">Random article</a></li>
- </ul>
- </div>
- </div>
- <div class="portlet" id="p-interaction">
- <h5>interaction</h5>
- <div class="pBody">
- <ul>
- <li id="n-About-Wikipedia"><a href="http://en.wikipedia.org/wiki/Wikipedia:About">About Wikipedia</a></li>
- <li id="n-portal"><a href="http://en.wikipedia.org/wiki/Wikipedia:Community_Portal" title="About the project, what you can do, where to find things">Community portal</a></li>
- <li id="n-recentchanges"><a href="http://en.wikipedia.org/wiki/Special:Recentchanges" title="The list of recent changes in the wiki. [ctrl-r]" accesskey="r">Recent changes</a></li>
- <li title="How to contact Wikipedia" id="n-contact"><a href="http://en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact us</a></li>
- <li title="Help keep Wikipedia running" id="n-sitesupport"><a href="http://wikimediafoundation.org/wiki/Fundraising" title="Support us">Make a donation</a></li>
- <li title="The place to find out about Wikipedia" id="n-help"><a href="http://en.wikipedia.org/wiki/Help:Contents" title="The place to find out.">Help</a></li>
- </ul>
- </div>
- </div>
- <div id="p-search" class="portlet">
- <h5><label for="searchInput">Search</label></h5>
- <div id="searchBody" class="pBody">
- <form action="/wiki/Special:Search" id="searchform"><div>
- <input id="searchInput" name="search" title="Search Wikipedia [ctrl-f]" accesskey="f" value="" type="text">
- <input name="go" class="searchButton" id="searchGoButton" value="Go" type="submit">
- <input name="fulltext" class="searchButton" id="mw-searchButton" value="Search" type="submit">
- </div></form>
- </div>
- </div>
- <div class="portlet" id="p-tb">
- <h5>Toolbox</h5>
- <div class="pBody">
- <ul>
- <li id="t-whatlinkshere"><a href="http://en.wikipedia.org/wiki/Special:Whatlinkshere/Bayes%27_theorem" title="List of all wiki pages that link here [ctrl-j]" accesskey="j">What links here</a></li>
- <li id="t-recentchangeslinked"><a href="http://en.wikipedia.org/wiki/Special:Recentchangeslinked/Bayes%27_theorem" title="Recent changes in pages linked from this page [ctrl-k]" accesskey="k">Related changes</a></li>
- <li id="t-upload"><a href="http://en.wikipedia.org/wiki/Special:Upload" title="Upload images or media files [ctrl-u]" accesskey="u">Upload file</a></li>
- <li id="t-specialpages"><a href="http://en.wikipedia.org/wiki/Special:Specialpages" title="List of all special pages [ctrl-q]" accesskey="q">Special pages</a></li>
- <li title="Printable version of this page" id="t-print"><a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&printable=yes">Printable version</a></li> <li title="Permanent link to this version of the page" id="t-permalink"><a href="http://en.wikipedia.org/w/index.php?title=Bayes%27_theorem&oldid=128360312">Permanent link</a></li><li title="Cite this Wikipedia article" id="t-cite"><a href="http://en.wikipedia.org/w/index.php?title=Special:Cite&page=Bayes%27_theorem&id=128360312">Cite this article</a></li> </ul>
- </div>
- </div>
- <div id="p-lang" class="portlet">
- <h5>In other languages</h5>
- <div class="pBody">
- <ul>
- <li class="interwiki-ar"><a href="http://ar.wikipedia.org/wiki/%D9%85%D8%A8%D8%B1%D9%87%D9%86%D8%A9_%D8%A8%D8%A7%D9%8A%D8%B2">العربية</a></li>
- <li class="interwiki-ca"><a href="http://ca.wikipedia.org/wiki/Teorema_de_Bayes">Català</a></li>
- <li class="interwiki-de"><a href="http://de.wikipedia.org/wiki/Bayestheorem">Deutsch</a></li>
- <li class="interwiki-es"><a href="http://es.wikipedia.org/wiki/Teorema_de_Bayes">Español</a></li>
- <li class="interwiki-fr"><a href="http://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Bayes">Français</a></li>
- <li class="interwiki-it"><a href="http://it.wikipedia.org/wiki/Teorema_di_Bayes">Italiano</a></li>
- <li class="interwiki-he"><a href="http://he.wikipedia.org/wiki/%D7%97%D7%95%D7%A7_%D7%91%D7%99%D7%99%D7%A1">עברית</a></li>
- <li class="interwiki-lt"><a href="http://lt.wikipedia.org/wiki/Bajeso_teorema">Lietuvių</a></li>
- <li class="interwiki-nl"><a href="http://nl.wikipedia.org/wiki/Theorema_van_Bayes">Nederlands</a></li>
- <li class="interwiki-ja"><a href="http://ja.wikipedia.org/wiki/%E3%83%99%E3%82%A4%E3%82%BA%E3%81%AE%E5%AE%9A%E7%90%86">日本語</a></li>
- <li class="interwiki-pl"><a href="http://pl.wikipedia.org/wiki/Twierdzenie_Bayesa">Polski</a></li>
- <li class="interwiki-pt"><a href="http://pt.wikipedia.org/wiki/Teorema_de_Bayes">Português</a></li>
- <li class="interwiki-ro"><a href="http://ro.wikipedia.org/wiki/Teorema_lui_Bayes">Română</a></li>
- <li class="interwiki-ru"><a href="http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%91%D0%B0%D0%B9%D0%B5%D1%81%D0%B0">Русский</a></li>
- <li class="interwiki-sr"><a href="http://sr.wikipedia.org/wiki/%D0%91%D0%B0%D1%98%D0%B5%D1%81%D0%BE%D0%B2%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0">Српски / Srpski</a></li>
- <li class="interwiki-su"><a href="http://su.wikipedia.org/wiki/T%C3%A9or%C3%A9ma_Bayes">Basa Sunda</a></li>
- <li class="interwiki-fi"><a href="http://fi.wikipedia.org/wiki/Bayesin_teoreema">Suomi</a></li>
- <li class="interwiki-sv"><a href="http://sv.wikipedia.org/wiki/Bayes_sats">Svenska</a></li>
- <li class="interwiki-vi"><a href="http://vi.wikipedia.org/wiki/%C4%90%E1%BB%8Bnh_l%C3%BD_Bayes">Tiếng Việt</a></li>
- <li class="interwiki-zh"><a href="http://zh.wikipedia.org/wiki/%E8%B4%9D%E5%8F%B6%E6%96%AF%E5%AE%9A%E7%90%86">中文</a></li>
- </ul>
- </div>
- </div>
- </div><!-- end of the left (by default at least) column -->
- <div class="visualClear"></div>
- <div id="footer">
- <div id="f-poweredbyico"><a href="http://www.mediawiki.org/"><img src="Bayes%27_theorem%20Files/poweredby_mediawiki_88x31.png" alt="Powered by MediaWiki"></a></div>
- <div id="f-copyrightico"><a href="http://wikimediafoundation.org/"><img src="Bayes%27_theorem%20Files/wikimedia-button.png" alt="Wikimedia Foundation" border="0"></a></div>
- <ul id="f-list">
- <li id="lastmod"> This page was last modified 03:56, 5 May 2007.</li>
- <li id="copyright">All text is available under the terms of the <a class="internal" href="http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License" title="Wikipedia:Text of the GNU Free Documentation License">GNU Free Documentation License</a>. (See <b><a class="internal" href="http://en.wikipedia.org/wiki/Wikipedia:Copyrights" title="Wikipedia:Copyrights">Copyrights</a></b> for details.) <br> Wikipedia® is a registered trademark of the <a href="http://www.wikimediafoundation.org/">Wikimedia Foundation, Inc</a>., a US-registered <a class="internal" href="http://en.wikipedia.org/wiki/501%28c%29#501.28c.29.283.29" title="501(c)(3)">501(c)(3)</a> <a href="http://wikimediafoundation.org/wiki/Deductibility_of_donations">tax-deductible</a> <a class="internal" href="http://en.wikipedia.org/wiki/Non-profit_organization" title="Non-profit organization">nonprofit</a> <a href="http://en.wikipedia.org/wiki/Charitable_organization" title="Charitable organization">charity</a>.<br></li>
- <li id="privacy"><a href="http://wikimediafoundation.org/wiki/Privacy_policy" title="wikimedia:Privacy policy">Privacy policy</a></li>
- <li id="about"><a href="http://en.wikipedia.org/wiki/Wikipedia:About" title="Wikipedia:About">About Wikipedia</a></li>
- <li id="disclaimer"><a href="http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer" title="Wikipedia:General disclaimer">Disclaimers</a></li>
- </ul>
- </div>
-
-
- <script type="text/javascript">if (window.runOnloadHook) runOnloadHook();</script>
- </div>
- <!-- Served by srv83 in 0.079 secs. -->
- </body></html>
|