
Federating Queries Using postgres fdw

john melesky

Rentrak, Inc

September 17, 2013

Who Am I?

I A long-time programmer, working with PostgreSQL in the
cloud

Who Am I?

I A long-time programmer, working with PostgreSQL in the
cloud my butt

Who Am I?

I A long-time programmer, working with PostgreSQL in the
cloud my butt

I Now, a DBA, working with PostgreSQL on real machines with
real disks

Who Am I?

I A long-time programmer, working with PostgreSQL in the
cloud my butt

I Now, a DBA, working with PostgreSQL on real machines
VMWare with real disks

Who Am I?

I A long-time programmer, working with PostgreSQL in the
cloud my butt

I Now, a DBA, working with PostgreSQL on real machines
VMWare with real disks NetApps

PostgreSQL inheritance partitioning

create table transactions (

id serial,

user_id bigint,

time_utc timestamp,

int_value bigint,

txt_value text,

primary key (id)

);

create table transactions_201306 (

like transactions including indexes,

check

(time_utc >= ’2013-06-01’ and

time_utc < ’2013-07-01’)

) inherits (transactions);

You know this already

PostgreSQL inheritance partitioning

create table transactions (

id serial,

user_id bigint,

time_utc timestamp,

int_value bigint,

txt_value text,

primary key (id)

);

create table transactions_201306 (

like transactions including indexes,

check

(time_utc >= ’2013-06-01’ and

time_utc < ’2013-07-01’)

) inherits (transactions);

You know this already

Old-school partitioning

create view transactions as (

select * from transactions_201301

union all

select * from transactions_201302

union all

select * from transactions_201303

union all

select * from transactions_201304

union all

...

);

Why don’t we still use this?

1. No insert triggers on views

2. No ”inherit indexes” without additional misdirection

3. Basically, we have a better option with inheritence partitioning

Why don’t we still use this?

1. No insert triggers on views

2. No ”inherit indexes” without additional misdirection

3. Basically, we have a better option with inheritence partitioning

Why don’t we still use this?

1. No insert triggers on views

2. No ”inherit indexes” without additional misdirection

3. Basically, we have a better option with inheritence partitioning

Why don’t we still use this?

1. No insert triggers on views

2. No ”inherit indexes” without additional misdirection

3. Basically, we have a better option with inheritence partitioning

Postgres Foreign Data Wrapper

-- just once

create extension postgres_fdw;

-- once per data node

create server node0 foreign data wrapper postgres_fdw

options (connection stuff);

create user mapping for app_user server node0;

-- once per table per node

create foreign table transactions_node0

(table definition)

server node0

options (table_name ’transactions’);

Federating, Old-school

create view transactions as (

select * from transactions_node0

union all

select * from transactions_node1

union all

select * from transactions_node2

union all

select * from transactions_node3

union all

...

);

Querying

primary=# explain select count(*) from transactions;

QUERY PLAN

Aggregate (cost=1767.38..1767.39 rows=1 width=0)

-> Append (cost=100.00..1699.12 rows=27304 width=0)

-> Foreign Scan on transactions_node0

(cost=100.00..212.39 rows=3413 width=0)

-> Foreign Scan on transactions_node1

(cost=100.00..212.39 rows=3413 width=0)

-> Foreign Scan on transactions_node2

(cost=100.00..212.39 rows=3413 width=0)

-> Foreign Scan on transactions_node3

(cost=100.00..212.39 rows=3413 width=0)

-> Foreign Scan on transactions_node4

(cost=100.00..212.39 rows=3413 width=0)

...

(10 rows)

Time: 1.226 ms

Querying

primary=# explain verbose select count(*) from transactions;

QUERY PLAN

Aggregate (cost=1767.38..1767.39 rows=1 width=0)

Output: count(*)

-> Append (cost=100.00..1699.12 rows=27304 width=0)

-> Foreign Scan on public.transactions_node0

(cost=100.00..212.39 rows=3413 width=0)

Remote SQL: SELECT NULL FROM public.transactions

-> Foreign Scan on public.transactions_node1

(cost=100.00..212.39 rows=3413 width=0)

Remote SQL: SELECT NULL FROM public.transactions

-> Foreign Scan on public.transactions_node2

(cost=100.00..212.39 rows=3413 width=0)

Remote SQL: SELECT NULL FROM public.transactions

...

(19 rows)

Time: 1.273 ms

Querying

primary=# select count(*) from transactions;

count

1095336

(1 row)

Time: 3035.054 ms

Round-robin

primary

node 0
(id % 4 = 0)

node 1
(id % 4 = 1)

node 2
(id % 4 = 2)

node 3
(id % 4 = 3)

Round-robin

primary=# create foreign table transactions_node0 (

primary(# id serial,

primary(# user_id bigint,

primary(# time_utc timestamp,

primary(# int_value bigint,

primary(# txt_value text,

primary(# check ((id % 8) = 0)

primary(#) server node0

primary(# options (table_name ’transactions’);

ERROR: constraints are not supported on foreign tables

LINE 6: check ((id % 8) = 0)) server node0 ...

Domain-based (aka ”sharding”)

primary

node 0
(customer = 'bigone')

node 1
(customer in ('bigtwo', 'bigthree')

node 2
(customer in (...))

node 3
(customer in (...))

Range-based

primary

node 0
(date between '2013-01-01' and '2013-01-31')

node 1
(date between ...)

node 2
(date between ...)

node 3
date between ...)

Table-based

primary

node 0
(users table(s))

node 1
(transactions table)

node 2
(session tables)

Multi-head

primary1

node0 node1node2 node3

primary2

Multi-head

primary1

node0 node1node2 node3

primary2primary3 primary4

Demo time

Limitations: Network traffic

primary=# select count(*) from transactions_local;

count

1095336

(1 row)

Time: 209.097 ms

primary=# select count(*) from transactions_primary;

count

1095336

(1 row)

Time: 2867.385 ms

Limitations: Network traffic

primary=# select count(*) from transactions_local;

count

1095336

(1 row)

Time: 209.097 ms

primary=# select count(*) from transactions_primary;

count

1095336

(1 row)

Time: 2867.385 ms

Limitations: Network traffic

primary=# select count(*) from transactions_local;

count

1095336

(1 row)

Time: 209.097 ms

primary=# select count(*) from transactions_primary;

count

1095336

(1 row)

Time: 2867.385 ms

Limitations: Dumb queries

primary=# explain verbose select count(*) from transactions;

QUERY PLAN

Aggregate (cost=1767.38..1767.39 rows=1 width=0)

Output: count(*)

-> Append (cost=100.00..1699.12 rows=27304 width=0)

-> Foreign Scan on public.transactions_node0

(cost=100.00..212.39 rows=3413 width=0)

Remote SQL: SELECT NULL FROM public.transactions

...

primary=# explain verbose select avg(int_value) from transactions;

QUERY PLAN

--

Aggregate (cost=1545.60..1545.61 rows=1 width=8)

Output: avg(transactions_node0.int_value)

-> Append (cost=100.00..1494.40 rows=20480 width=8)

-> Foreign Scan on public.transactions_node0

(cost=100.00..186.80 rows=2560 width=8)

Output: transactions_node0.int_value

Remote SQL: SELECT int_value FROM public.transactions

...

Limitations: Dumb queries

primary=# explain verbose select count(*) from transactions;

QUERY PLAN

Aggregate (cost=1767.38..1767.39 rows=1 width=0)

Output: count(*)

-> Append (cost=100.00..1699.12 rows=27304 width=0)

-> Foreign Scan on public.transactions_node0

(cost=100.00..212.39 rows=3413 width=0)

Remote SQL: SELECT NULL FROM public.transactions

...

primary=# explain verbose select avg(int_value) from transactions;

QUERY PLAN

--

Aggregate (cost=1545.60..1545.61 rows=1 width=8)

Output: avg(transactions_node0.int_value)

-> Append (cost=100.00..1494.40 rows=20480 width=8)

-> Foreign Scan on public.transactions_node0

(cost=100.00..186.80 rows=2560 width=8)

Output: transactions_node0.int_value

Remote SQL: SELECT int_value FROM public.transactions

...

Limitations: Dumb queries

primary=# explain verbose select count(*) from transactions;

QUERY PLAN

Aggregate (cost=1767.38..1767.39 rows=1 width=0)

Output: count(*)

-> Append (cost=100.00..1699.12 rows=27304 width=0)

-> Foreign Scan on public.transactions_node0

(cost=100.00..212.39 rows=3413 width=0)

Remote SQL: SELECT NULL FROM public.transactions

...

primary=# explain verbose select avg(int_value) from transactions;

QUERY PLAN

--

Aggregate (cost=1545.60..1545.61 rows=1 width=8)

Output: avg(transactions_node0.int_value)

-> Append (cost=100.00..1494.40 rows=20480 width=8)

-> Foreign Scan on public.transactions_node0

(cost=100.00..186.80 rows=2560 width=8)

Output: transactions_node0.int_value

Remote SQL: SELECT int_value FROM public.transactions

...

Limitations: Dumb queries

select type, count(*)

from users

group by type

order by 2 desc;

Limitations: Joins

select count(*)

from transactions t, users u

where t.user_id = u.id

and u.type = ’mistaken’;

Limitations: Joins

select count(*)

from transactions t, users u

where t.user_id = u.id

and u.type = ’mistaken’;

Limitations: Keys

’Nuff said

Limitations: Keys

’Nuff said

Limitations: Constraint exclusion
Remember this?

ERROR: constraints are not supported on foreign tables

LINE 6: check ((id % 8) = 0)) server node0

Limitations: Single-threaded executer

How many nodes do you have?
Do you know what they’re doing?

Limitations: Single-threaded executer

How many nodes do you have?

Do you know what they’re doing?

Limitations: Single-threaded executer

How many nodes do you have?
Do you know what they’re doing?

Strategies

I Large working set, small nodes

I Node-level partitioning

I Heavy distributed processing

I Multi-head

Strategy: Large working set, small nodes

I Your working set is larger than one node’s RAM

I ... but you have lots of nodes

I (and network is faster than disk)

I This might be worth looking into if you’re on AWS, but
please, please test it first

Strategy: Large working set, small nodes

I Your working set is larger than one node’s RAM

I ... but you have lots of nodes

I (and network is faster than disk)

I This might be worth looking into if you’re on AWS, but
please, please test it first

Strategy: Large working set, small nodes

I Your working set is larger than one node’s RAM

I ... but you have lots of nodes

I (and network is faster than disk)

I This might be worth looking into if you’re on AWS, but
please, please test it first

Strategy: Large working set, small nodes

I Your working set is larger than one node’s RAM

I ... but you have lots of nodes

I (and network is faster than disk)

I This might be worth looking into if you’re on AWS, but
please, please test it first

Strategy: Large working set, small nodes

I Your working set is larger than one node’s RAM

I ... but you have lots of nodes

I (and network is faster than disk)

I This might be worth looking into if you’re on AWS, but
please, please test it first

Strategy: Node-level partitioning

Like parititioning, but with a separate node per partition group!

As a total strategy, this is probably not worthwhile. However, it
can work with a fast ”current data” node combining with slower
”archived data” nodes.

Strategy: Node-level partitioning

Like parititioning, but with a separate node per partition group!
As a total strategy, this is probably not worthwhile. However, it
can work with a fast ”current data” node combining with slower
”archived data” nodes.

Heavy distributed processing

I Take advantage of lots of CPUs

I Works well when you have node-discrete workloads

I Lock management can become a bit hairier

I This might actually be a useful use case

Heavy distributed processing

I Take advantage of lots of CPUs

I Works well when you have node-discrete workloads

I Lock management can become a bit hairier

I This might actually be a useful use case

Heavy distributed processing

I Take advantage of lots of CPUs

I Works well when you have node-discrete workloads

I Lock management can become a bit hairier

I This might actually be a useful use case

Heavy distributed processing

I Take advantage of lots of CPUs

I Works well when you have node-discrete workloads

I Lock management can become a bit hairier

I This might actually be a useful use case

Heavy distributed processing

I Take advantage of lots of CPUs

I Works well when you have node-discrete workloads

I Lock management can become a bit hairier

I This might actually be a useful use case

Multi-headed

I Like replication, but with no overhead or delay!

I Also, no storage overhead!

I Might work well with the distributed processing setup

I In fact, given the overhead that lands on the head node, it
might be necessary for a working FDW federation setup

Multi-headed

I Like replication, but with no overhead or delay!

I Also, no storage overhead!

I Might work well with the distributed processing setup

I In fact, given the overhead that lands on the head node, it
might be necessary for a working FDW federation setup

Multi-headed

I Like replication, but with no overhead or delay!

I Also, no storage overhead!

I Might work well with the distributed processing setup

I In fact, given the overhead that lands on the head node, it
might be necessary for a working FDW federation setup

Multi-headed

I Like replication, but with no overhead or delay!

I Also, no storage overhead!

I Might work well with the distributed processing setup

I In fact, given the overhead that lands on the head node, it
might be necessary for a working FDW federation setup

Multi-headed

I Like replication, but with no overhead or delay!

I Also, no storage overhead!

I Might work well with the distributed processing setup

I In fact, given the overhead that lands on the head node, it
might be necessary for a working FDW federation setup

Pan-Strategy Advice

I Think very carefully about what tables should live where
I Think very carefully about tuning settings (especially on your

head node)
I work mem
I shared buffers
I temp buffers

I Think very carefully about how many data nodes you want

I Think very carefully about network vs. disk vs. dumb-query
costs

I Think very carefully!

Pan-Strategy Advice

I Think very carefully about what tables should live where

I Think very carefully about tuning settings (especially on your
head node)

I work mem
I shared buffers
I temp buffers

I Think very carefully about how many data nodes you want

I Think very carefully about network vs. disk vs. dumb-query
costs

I Think very carefully!

Pan-Strategy Advice

I Think very carefully about what tables should live where
I Think very carefully about tuning settings (especially on your

head node)
I work mem
I shared buffers
I temp buffers

I Think very carefully about how many data nodes you want

I Think very carefully about network vs. disk vs. dumb-query
costs

I Think very carefully!

Pan-Strategy Advice

I Think very carefully about what tables should live where
I Think very carefully about tuning settings (especially on your

head node)
I work mem
I shared buffers
I temp buffers

I Think very carefully about how many data nodes you want

I Think very carefully about network vs. disk vs. dumb-query
costs

I Think very carefully!

Pan-Strategy Advice

I Think very carefully about what tables should live where
I Think very carefully about tuning settings (especially on your

head node)
I work mem
I shared buffers
I temp buffers

I Think very carefully about how many data nodes you want

I Think very carefully about network vs. disk vs. dumb-query
costs

I Think very carefully!

Pan-Strategy Advice

I Think very carefully about what tables should live where
I Think very carefully about tuning settings (especially on your

head node)
I work mem
I shared buffers
I temp buffers

I Think very carefully about how many data nodes you want

I Think very carefully about network vs. disk vs. dumb-query
costs

I Think very carefully!

Thanks!

Questions?

Any questions?

John, do you use this approach for your databases?
Why not?

Questions?

Any questions?
John, do you use this approach for your databases?

Why not?

Questions?

Any questions?
John, do you use this approach for your databases?
Why not?

Thanks!

Plug: Stephen Frost has another postgres fdw talk tomorrow
Also: Rentrak is hiring: programmers, sysadmins, and devops

Thanks!

Plug: Stephen Frost has another postgres fdw talk tomorrow

Also: Rentrak is hiring: programmers, sysadmins, and devops

Thanks!

Plug: Stephen Frost has another postgres fdw talk tomorrow
Also: Rentrak is hiring: programmers, sysadmins, and devops

Federating Queries Using postgres fdw

Introduction
Who am I?

Partitioning
PostgreSQL inheritance partitioning
Old-school partitioning

Federating Queries

Federation Strategies Overview

Trial and Error
Demo
Limitations

Strategies

Wrap-up

	Introduction
	Who am I?

	Partitioning
	PostgreSQL inheritance partitioning
	Old-school partitioning

	Federating Queries
	Federation Strategies Overview
	Trial and Error
	Demo
	Limitations

	Strategies
	Wrap-up

