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PostgreSQL inheritance partitioning

create table transactions (

id serial,

user_id bigint,

time_utc timestamp,

int_value bigint,

txt_value text,

primary key (id)

);

create table transactions_201306 (

like transactions including indexes,

check

(time_utc >= ’2013-06-01’ and

time_utc < ’2013-07-01’)

) inherits (transactions);

You know this already
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Old-school partitioning

create view transactions as (

select * from transactions_201301

union all

select * from transactions_201302

union all

select * from transactions_201303

union all

select * from transactions_201304

union all

...

);



Why don’t we still use this?

1. No insert triggers on views

2. No ”inherit indexes” without additional misdirection

3. Basically, we have a better option with inheritence partitioning
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Postgres Foreign Data Wrapper

-- just once

create extension postgres_fdw;

-- once per data node

create server node0 foreign data wrapper postgres_fdw

options (connection stuff);

create user mapping for app_user server node0;

-- once per table per node

create foreign table transactions_node0

(table definition)

server node0

options (table_name ’transactions’);



Federating, Old-school

create view transactions as (

select * from transactions_node0

union all

select * from transactions_node1

union all

select * from transactions_node2

union all

select * from transactions_node3

union all

...

);



Querying

primary=# explain select count(*) from transactions;

QUERY PLAN

---------------------------------------------------------

Aggregate (cost=1767.38..1767.39 rows=1 width=0)

-> Append (cost=100.00..1699.12 rows=27304 width=0)

-> Foreign Scan on transactions_node0

(cost=100.00..212.39 rows=3413 width=0)

-> Foreign Scan on transactions_node1

(cost=100.00..212.39 rows=3413 width=0)

-> Foreign Scan on transactions_node2

(cost=100.00..212.39 rows=3413 width=0)

-> Foreign Scan on transactions_node3

(cost=100.00..212.39 rows=3413 width=0)

-> Foreign Scan on transactions_node4

(cost=100.00..212.39 rows=3413 width=0)

...

(10 rows)

Time: 1.226 ms



Querying

primary=# explain verbose select count(*) from transactions;

QUERY PLAN

-----------------------------------------------------------------

Aggregate (cost=1767.38..1767.39 rows=1 width=0)

Output: count(*)

-> Append (cost=100.00..1699.12 rows=27304 width=0)

-> Foreign Scan on public.transactions_node0

(cost=100.00..212.39 rows=3413 width=0)

Remote SQL: SELECT NULL FROM public.transactions

-> Foreign Scan on public.transactions_node1

(cost=100.00..212.39 rows=3413 width=0)

Remote SQL: SELECT NULL FROM public.transactions

-> Foreign Scan on public.transactions_node2

(cost=100.00..212.39 rows=3413 width=0)

Remote SQL: SELECT NULL FROM public.transactions

...

(19 rows)

Time: 1.273 ms



Querying

primary=# select count(*) from transactions;

count

---------

1095336

(1 row)

Time: 3035.054 ms



Round-robin

primary

node 0
(id % 4 = 0)

node 1
(id % 4 = 1)

node 2
(id % 4 = 2)

node 3
(id % 4 = 3)



Round-robin

primary=# create foreign table transactions_node0 (

primary(# id serial,

primary(# user_id bigint,

primary(# time_utc timestamp,

primary(# int_value bigint,

primary(# txt_value text,

primary(# check ((id % 8) = 0)

primary(# ) server node0

primary(# options (table_name ’transactions’);

ERROR: constraints are not supported on foreign tables

LINE 6: check ((id % 8) = 0)) server node0 ...



Domain-based (aka ”sharding”)

primary

node 0
(customer = 'bigone')

node 1
(customer in ('bigtwo', 'bigthree')

node 2
(customer in (...))

node 3
(customer in (...))



Range-based

primary

node 0
(date between '2013-01-01' and '2013-01-31')

node 1
(date between ...)

node 2
(date between ...)

node 3
date between ...)



Table-based

primary

node 0
(users table(s))

node 1
(transactions table)

node 2
(session tables)



Multi-head

primary1

node0 node1node2 node3

primary2



Multi-head

primary1

node0 node1node2 node3

primary2primary3 primary4



Demo time



Limitations: Network traffic

primary=# select count(*) from transactions_local;

count

---------

1095336

(1 row)

Time: 209.097 ms
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count

---------
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Limitations: Dumb queries

primary=# explain verbose select count(*) from transactions;

QUERY PLAN

-----------------------------------------------------------------

Aggregate (cost=1767.38..1767.39 rows=1 width=0)

Output: count(*)

-> Append (cost=100.00..1699.12 rows=27304 width=0)

-> Foreign Scan on public.transactions_node0

(cost=100.00..212.39 rows=3413 width=0)

Remote SQL: SELECT NULL FROM public.transactions

...

primary=# explain verbose select avg(int_value) from transactions;

QUERY PLAN

----------------------------------------------------------------------------

Aggregate (cost=1545.60..1545.61 rows=1 width=8)

Output: avg(transactions_node0.int_value)

-> Append (cost=100.00..1494.40 rows=20480 width=8)

-> Foreign Scan on public.transactions_node0

(cost=100.00..186.80 rows=2560 width=8)

Output: transactions_node0.int_value

Remote SQL: SELECT int_value FROM public.transactions

...
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Limitations: Dumb queries

select type, count(*)

from users

group by type

order by 2 desc;



Limitations: Joins

select count(*)

from transactions t, users u

where t.user_id = u.id

and u.type = ’mistaken’;
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Limitations: Constraint exclusion
Remember this?

ERROR: constraints are not supported on foreign tables

LINE 6: check ((id % 8) = 0)) server node0 ....



Limitations: Single-threaded executer

How many nodes do you have?
Do you know what they’re doing?



Limitations: Single-threaded executer

How many nodes do you have?

Do you know what they’re doing?



Limitations: Single-threaded executer

How many nodes do you have?
Do you know what they’re doing?



Strategies

I Large working set, small nodes

I Node-level partitioning

I Heavy distributed processing

I Multi-head
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I Your working set is larger than one node’s RAM

I ... but you have lots of nodes

I (and network is faster than disk)

I This might be worth looking into if you’re on AWS, but
please, please test it first
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Strategy: Node-level partitioning

Like parititioning, but with a separate node per partition group!

As a total strategy, this is probably not worthwhile. However, it
can work with a fast ”current data” node combining with slower
”archived data” nodes.
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I Take advantage of lots of CPUs

I Works well when you have node-discrete workloads

I Lock management can become a bit hairier

I This might actually be a useful use case
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Multi-headed

I Like replication, but with no overhead or delay!

I Also, no storage overhead!

I Might work well with the distributed processing setup

I In fact, given the overhead that lands on the head node, it
might be necessary for a working FDW federation setup
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Pan-Strategy Advice

I Think very carefully about what tables should live where
I Think very carefully about tuning settings (especially on your

head node)
I work mem
I shared buffers
I temp buffers

I Think very carefully about how many data nodes you want

I Think very carefully about network vs. disk vs. dumb-query
costs

I Think very carefully!
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