Browse Source

add SVM lightning talk

jmelesky 8 years ago
parent
commit
bf3781cf1a

BIN
talks/svm-lightning/badline1.png


BIN
talks/svm-lightning/badline2.png


BIN
talks/svm-lightning/badset1.png


BIN
talks/svm-lightning/badset2.png


BIN
talks/svm-lightning/badset3.png


BIN
talks/svm-lightning/basedata.png


BIN
talks/svm-lightning/bordervectors.png


BIN
talks/svm-lightning/cleansep.png


+ 218 - 0
talks/svm-lightning/index.html

@@ -0,0 +1,218 @@
+<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
+<html> <head>
+<title>Support Vector Machines</title>
+
+<style>
+
+.slide {
+  border: 2px solid #000066;
+  background-color: #CCCCFF;
+  position: absolute;
+  padding: 5%;
+  width: 85%;
+  height: 80%;
+}
+
+
+</style>
+
+<script>
+var slides = new Array();
+var currentSlide = 0;
+
+function initializeSlideshow() {
+  var divs = document.getElementsByTagName("div");
+  for (i=0; i < divs.length; i++) {
+    var div = divs[i];
+    if (div.className && (div.className == "slide")) {
+      div.style.display = "none";
+      div.addEventListener("click", showSlide, false);
+      slides.push(div);
+    }
+  }
+
+  showSlide();
+}
+
+
+
+function showSlide() {
+  for (var i in slides) {
+    slides[i].style.display = "none";
+  }
+  slides[currentSlide].style.display = "inline";
+  currentSlide++;
+  if (currentSlide >= slides.length) {
+    currentSlide = 0;
+  }
+}
+</script>
+</head>
+
+<body onload="initializeSlideshow();">
+
+
+<div class='slide'>
+<h1>Support Vector Machines</h1>
+<p>(lightning talk)</p>
+<p>(LPW '07) (john melesky)</p>
+</div>
+
+<div class='slide'>
+<h1>Presupposing:</h1>
+<ul>
+<li>You have a bunch of something.</li>
+<li>You can transform relevant attributes of those things into numbers.</li>
+<li>You can connect those numbers into vectors (think coordinates in an attribute space).</li>
+<li>You want to categorise them base on those numbers.</li>
+</ul>
+</div>
+
+<div class='slide'>
+<h1>The problem: find a line that separates these two categories of thing</h1>
+<img style="float: right;" src="basedata.png" />
+</div>
+
+<div class='slide'>
+<h1>For humans, this is easy.</h1>
+<img style="float: right;" src="cleansep.png" />
+<p>For mathematicians, it's actually not too hard.</p>
+</div>
+
+<div class='slide'>
+<h1>For humans, this is easy.</h1>
+<img style="float: right;" src="cleansep.png" />
+<p>For <del>mathematicians</del> computers, it's actually not too hard.</p>
+</div>
+
+<div class='slide'>
+<h1>There are two problems, though.</h1>
+</div>
+
+<div class='slide'>
+<h1>Problem, the first:</h1>
+<img style="float: right;" src="badline1.png" />
+</div>
+
+<div class='slide'>
+<h1>Problem, the first:</h1>
+<img style="float: right;" src="badline2.png" />
+</div>
+
+<div class='slide'>
+<h1>Problem, the second:</h1>
+<img style="float: right;" src="badset1.png" />
+</div>
+
+<div class='slide'>
+<h1>Problem, the second:</h1>
+<img style="float: right;" src="badset2.png" />
+</div>
+
+<div class='slide'>
+<h1>Problem, the second:</h1>
+<img style="float: right;" src="badset3.png" />
+</div>
+
+<div class='slide'>
+<h1>Conveniently, Support Vector Machines address both of the problems i've identified.</h1>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<img style="float: right;" src="bordervectors.png" />
+<ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+</ul>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<img style="float: right;" src="bordervectors.png" />
+<ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+<li>As you add new items, ensure these "borders" stay parallel.</li>
+</ul>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<img style="float: right;" src="supportvectors.png" />
+<ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+<li>As you add new items, ensure these "borders" stay parallel.</li>
+<li>Create your categorizing vector equidistant from your two "borders".</li>
+</ul>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<img style="float: right;" src="supportvectors.png" />
+<ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+<li>As you add new items, ensure these "borders" stay parallel.</li>
+<li>Create your categorizing vector equidistant from your two "borders".</li>
+<li>These "borders" are called "support vectors".</li>
+</ul>
+</div>
+
+<div class='slide'>
+<h1>A joke:</h1>
+<p>Q: How many mathematicians does it take to change a lightbulb?</p>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>A joke:</h1>
+<p>Q: How many mathematicians does it take to change a lightbulb?</p>
+<p>A: One, who hands it to 127 Londoners, thus reducing it to an earlier joke.</p>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>A question:</h1>
+<p>Q: How do mathematicians categorize non-linearly-separable data?</p>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>A question:</h1>
+<p>Q: How do mathematicians categorize non-linearly-separable data?</p>
+<p>A: Munge the data until it's linearly separable, thus reducing it to an earlier slide.</p>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>A question:</h1>
+<p>Q: How do mathematicians categorize non-linearly-separable data?</p>
+<p>A: Munge the data until it's linearly separable, thus reducing it to an earlier slide.</p>
+<p>Seriously. The munging is done using what are known as "kernel methods".</p>
+</div>
+
+<div class='slide'>
+<h1>Kernel Methods</h1>
+<ul>
+<li>Functions that munge data</li>
+<li>Very faintly magical (because i have no idea how they were derived)</li>
+<li>Require some skill to choose the right one for the problem</li>
+<ul>
+</div>
+
+<div class='slide'>
+<h1>Kernel Methods + Support Vectors = Support Vector Machines</h1>
+</div>
+
+<div class='slide'>
+<h1>In Perl:</h1>
+<p>Algorithm::SVM - bindings to libsvm</p>
+<p>(Also wrapped by AI::Categorizer)</p>
+</div>
+
+</body></html>
+

BIN
talks/svm-lightning/supportvectors.png


+ 218 - 0
talks/svm-lightning/svm_lightning.html

@@ -0,0 +1,218 @@
+<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
+<html> <head>
+<title>Support Vector Machines</title>
+
+<style>
+
+.slide {
+  border: 2px solid #000066;
+  background-color: #CCCCFF;
+  position: absolute;
+  padding: 5%;
+  width: 85%;
+  height: 80%;
+}
+
+
+</style>
+
+<script>
+var slides = new Array();
+var currentSlide = 0;
+
+function initializeSlideshow() {
+  var divs = document.getElementsByTagName("div");
+  for (i=0; i < divs.length; i++) {
+    var div = divs[i];
+    if (div.className && (div.className == "slide")) {
+      div.style.display = "none";
+      div.addEventListener("click", showSlide, false);
+      slides.push(div);
+    }
+  }
+
+  showSlide();
+}
+
+
+
+function showSlide() {
+  for (var i in slides) {
+    slides[i].style.display = "none";
+  }
+  slides[currentSlide].style.display = "inline";
+  currentSlide++;
+  if (currentSlide >= slides.length) {
+    currentSlide = 0;
+  }
+}
+</script>
+</head>
+
+<body onload="initializeSlideshow();">
+
+
+<div class='slide'>
+<h1>Support Vector Machines</h1>
+<p>(lightning talk)</p>
+<p>(LPW '07) (john melesky)</p>
+</div>
+
+<div class='slide'>
+<h1>Presupposing:</h1>
+<ul>
+<li>You have a bunch of something.</li>
+<li>You can transform relevant attributes of those things into numbers.</li>
+<li>You can connect those numbers into vectors (think coordinates in an attribute space).</li>
+<li>You want to categorise them base on those numbers.</li>
+</ul>
+</div>
+
+<div class='slide'>
+<h1>The problem: find a line that separates these two categories of thing</h1>
+<img style="float: right;" src="basedata.png" />
+</div>
+
+<div class='slide'>
+<h1>For humans, this is easy.</h1>
+<img style="float: right;" src="cleansep.png" />
+<p>For mathematicians, it's actually not too hard.</p>
+</div>
+
+<div class='slide'>
+<h1>For humans, this is easy.</h1>
+<img style="float: right;" src="cleansep.png" />
+<p>For <del>mathematicians</del> computers, it's actually not too hard.</p>
+</div>
+
+<div class='slide'>
+<h1>There are two problems, though.</h1>
+</div>
+
+<div class='slide'>
+<h1>Problem, the first:</h1>
+<img style="float: right;" src="badline1.png" />
+</div>
+
+<div class='slide'>
+<h1>Problem, the first:</h1>
+<img style="float: right;" src="badline2.png" />
+</div>
+
+<div class='slide'>
+<h1>Problem, the second:</h1>
+<img style="float: right;" src="badset1.png" />
+</div>
+
+<div class='slide'>
+<h1>Problem, the second:</h1>
+<img style="float: right;" src="badset2.png" />
+</div>
+
+<div class='slide'>
+<h1>Problem, the second:</h1>
+<img style="float: right;" src="badset3.png" />
+</div>
+
+<div class='slide'>
+<h1>Conveniently, Support Vector Machines address both of the problems i've identified.</h1>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<img style="float: right;" src="bordervectors.png" />
+<ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+</ul>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<img style="float: right;" src="bordervectors.png" />
+<ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+<li>As you add new items, ensure these "borders" stay parallel.</li>
+</ul>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<img style="float: right;" src="supportvectors.png" />
+<ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+<li>As you add new items, ensure these "borders" stay parallel.</li>
+<li>Create your categorizing vector equidistant from your two "borders".</li>
+</ul>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<img style="float: right;" src="supportvectors.png" />
+<ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+<li>As you add new items, ensure these "borders" stay parallel.</li>
+<li>Create your categorizing vector equidistant from your two "borders".</li>
+<li>These "borders" are called "support vectors".</li>
+</ul>
+</div>
+
+<div class='slide'>
+<h1>A joke:</h1>
+<p>Q: How many mathematicians does it take to change a lightbulb?</p>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>A joke:</h1>
+<p>Q: How many mathematicians does it take to change a lightbulb?</p>
+<p>A: One, who hands it to 127 Londoners, thus reducing it to an earlier joke.</p>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>A question:</h1>
+<p>Q: How do mathematicians categorize non-linearly-separable data?</p>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>A question:</h1>
+<p>Q: How do mathematicians categorize non-linearly-separable data?</p>
+<p>A: Munge the data until it's linearly separable, thus reducing it to an earlier slide.</p>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>A question:</h1>
+<p>Q: How do mathematicians categorize non-linearly-separable data?</p>
+<p>A: Munge the data until it's linearly separable, thus reducing it to an earlier slide.</p>
+<p>Seriously. The munging is done using what are known as "kernel methods".</p>
+</div>
+
+<div class='slide'>
+<h1>Kernel Methods</h1>
+<ul>
+<li>Functions that munge data</li>
+<li>Very faintly magical (because i have no idea how they were derived)</li>
+<li>Require some skill to choose the right one for the problem</li>
+<ul>
+</div>
+
+<div class='slide'>
+<h1>Kernel Methods + Support Vectors = Support Vector Machines</h1>
+</div>
+
+<div class='slide'>
+<h1>In Perl:</h1>
+<p>Algorithm::SVM - bindings to libsvm</p>
+<p>(Also wrapped by AI::Categorizer)</p>
+</div>
+
+</body></html>
+

+ 216 - 0
talks/svm-lightning/svm_lightning.html.bak

@@ -0,0 +1,216 @@
+<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
+<html> <head>
+<title>Support Vector Machines</title>
+
+<style>
+
+.slide {
+  border: 2px solid #000066;
+  background-color: #CCCCFF;
+  position: absolute;
+  width: 95%;
+  height: 95%;
+}
+
+
+</style>
+
+<script>
+var slides = new Array();
+var currentSlide = 0;
+
+function initializeSlideshow() {
+  var divs = document.getElementsByTagName("div");
+  for (i=0; i < divs.length; i++) {
+    var div = divs[i];
+    if (div.className && (div.className == "slide")) {
+      div.style.display = "none";
+      div.addEventListener("click", showSlide, false);
+      slides.push(div);
+    }
+  }
+
+  showSlide();
+}
+
+
+
+function showSlide() {
+  for (var i in slides) {
+    slides[i].style.display = "none";
+  }
+  slides[currentSlide].style.display = "inline";
+  currentSlide++;
+  if (currentSlide >= slides.length) {
+    currentSlide = 0;
+  }
+}
+</script>
+</head>
+
+<body onload="initializeSlideshow();">
+
+
+<div class='slide'>
+<h1>Support Vector Machines</h1>
+<p>(lightning talk)</p>
+<p>(LPW '07) (john melesky)</p>
+</div>
+
+<div class='slide'>
+<h1>Presupposing:</h1>
+<p><ul>
+<li>You have a bunch of something.</li>
+<li>You can transform relevant attributes of those things into numbers.</li>
+<li>You can connect those numbers into vectors (think coordinates in an attribute space).</li>
+<li>You want to categorise them base on those numbers.</li>
+</ul></p>
+</div>
+
+<div class='slide'>
+<h1>The problem: find a line that separates these two categories of thing</h1>
+<img style="float: right;" src="basedata.png" />
+</div>
+
+<div class='slide'>
+<h1>For humans, this is easy.</h1>
+<img style="float: right;" src="cleansep.png" />
+<p>For mathematicians, it's actually not too hard.</p>
+</div>
+
+<div class='slide'>
+<h1>For humans, this is easy.</h1>
+<img style="float: right;" src="cleansep.png" />
+<p>For <del>mathematicians</del> computers, it's actually not too hard.</p>
+</div>
+
+<div class='slide'>
+<h1>There are two problems, though.</h1>
+</div>
+
+<div class='slide'>
+<h1>Problem, the first:</h1>
+<img style="float: right;" src="badline1.png" />
+</div>
+
+<div class='slide'>
+<h1>Problem, the first:</h1>
+<img style="float: right;" src="badline2.png" />
+</div>
+
+<div class='slide'>
+<h1>Problem, the second:</h1>
+<img style="float: right;" src="badset1.png" />
+</div>
+
+<div class='slide'>
+<h1>Problem, the second:</h1>
+<img style="float: right;" src="badset2.png" />
+</div>
+
+<div class='slide'>
+<h1>Problem, the second:</h1>
+<img style="float: right;" src="badset3.png" />
+</div>
+
+<div class='slide'>
+<h1>Conveniently, Support Vector Machines address both of the problems i've identified.</h1>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<img style="float: right;" src="bordervectors.png" />
+<p><ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+</ul></p>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<img style="float: right;" src="bordervectors.png" />
+<p><ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+<li>As you add new items, ensure these "borders" stay parallel.</li>
+</ul></p>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<img style="float: right;" src="supportvectors.png" />
+<p><ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+<li>As you add new items, ensure these "borders" stay parallel.</li>
+<li>Create your categorizing vector equidistant from your two "borders".</li>
+</ul></p>
+</div>
+
+<div class='slide'>
+<h1>Solution, the first:</h1>
+<img style="float: right;" src="supportvectors.png" />
+<p><ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+<li>As you add new items, ensure these "borders" stay parallel.</li>
+<li>Create your categorizing vector equidistant from your two "borders".</li>
+<li>These "borders" are called "support vectors".</li>
+</ul></p>
+</div>
+
+<div class='slide'>
+<h1>A joke:</h1>
+<p>Q: How many mathematicians does it take to change a lightbulb?</p>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>A joke:</h1>
+<p>Q: How many mathematicians does it take to change a lightbulb?</p>
+<p>A: One, who hands it to 127 Londoners, thus reducing it to an earlier joke.</p>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>A question:</h1>
+<p>Q: How do mathematicians categorize non-linearly-separable data?</p>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>A question:</h1>
+<p>Q: How do mathematicians categorize non-linearly-separable data?</p>
+<p>A: Munge the data until it's linearly separable, thus reducing it to an earlier slide.</p>
+<p></p>
+</div>
+
+<div class='slide'>
+<h1>A question:</h1>
+<p>Q: How do mathematicians categorize non-linearly-separable data?</p>
+<p>A: Munge the data until it's linearly separable, thus reducing it to an earlier slide.</p>
+<p>Seriously. The munging is done using what are known as "kernel methods".</p>
+</div>
+
+<div class='slide'>
+<h1>Kernel Methods</h1>
+<p><ul>
+<li>Functions that munge data</li>
+<li>Very faintly magical (because i have no idea how they were derived)</li>
+<li>Require some skill to choose the right one for the problem</li>
+<ul></p>
+</div>
+
+<div class='slide'>
+<h1>Kernel Methods + Support Vectors = Support Vector Machines</h1>
+</div>
+
+<div class='slide'>
+<h1>In Perl:</h1>
+<p>Algorithm::SVM - bindings to libsvm</p>
+<p>(Also wrapped by AI::Categorizer)</p>
+</div>
+
+</body></html>

+ 193 - 0
talks/svm-lightning/svm_lightning.txt

@@ -0,0 +1,193 @@
+Support Vector Machines
+
+(lightning talk)
+
+(LPW '07) (john melesky)
+
+---
+
+Presupposing:
+
+<ul>
+<li>You have a bunch of something.</li>
+<li>You can transform relevant attributes of those things into numbers.</li>
+<li>You can connect those numbers into vectors (think coordinates in an attribute space).</li>
+<li>You want to categorise them base on those numbers.</li>
+</ul>
+
+---
+
+The problem: find a line that separates these two categories of thing
+
+<img style="float: right;" src="basedata.png" />
+
+---
+
+For humans, this is easy.
+
+<img style="float: right;" src="cleansep.png" />
+
+For mathematicians, it's actually not too hard.
+
+---
+
+For humans, this is easy.
+
+<img style="float: right;" src="cleansep.png" />
+
+For <del>mathematicians</del> computers, it's actually not too hard.
+
+---
+
+There are two problems, though.
+
+---
+
+Problem, the first:
+
+<img style="float: right;" src="badline1.png" />
+
+---
+
+Problem, the first:
+
+<img style="float: right;" src="badline2.png" />
+
+---
+
+Problem, the second:
+
+<img style="float: right;" src="badset1.png" />
+
+---
+
+Problem, the second:
+
+<img style="float: right;" src="badset2.png" />
+
+---
+
+Problem, the second:
+
+<img style="float: right;" src="badset3.png" />
+
+---
+
+Conveniently, Support Vector Machines address both of the problems i've identified.
+
+
+---
+
+Solution, the first:
+
+
+---
+
+Solution, the first:
+
+<img style="float: right;" src="bordervectors.png" />
+
+<ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+</ul>
+
+---
+
+Solution, the first:
+
+<img style="float: right;" src="bordervectors.png" />
+
+<ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+<li>As you add new items, ensure these "borders" stay parallel.</li>
+</ul>
+
+---
+
+Solution, the first:
+
+<img style="float: right;" src="supportvectors.png" />
+
+<ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+<li>As you add new items, ensure these "borders" stay parallel.</li>
+<li>Create your categorizing vector equidistant from your two "borders".</li>
+</ul>
+
+---
+
+Solution, the first:
+
+<img style="float: right;" src="supportvectors.png" />
+
+<ul>
+<li>Create "border" vectors, parallel to eachother, touching the outermost edge of each category dataset.</li>
+<li>As you add new items, ensure these "borders" stay parallel.</li>
+<li>Create your categorizing vector equidistant from your two "borders".</li>
+<li>These "borders" are called "support vectors".</li>
+</ul>
+
+---
+
+A joke:
+
+Q: How many mathematicians does it take to change a lightbulb?
+
+
+---
+
+A joke:
+
+Q: How many mathematicians does it take to change a lightbulb?
+
+A: One, who hands it to 127 Londoners, thus reducing it to an earlier joke.
+
+
+---
+
+A question:
+
+Q: How do mathematicians categorize non-linearly-separable data?
+
+
+---
+
+A question:
+
+Q: How do mathematicians categorize non-linearly-separable data?
+
+A: Munge the data until it's linearly separable, thus reducing it to an earlier slide.
+
+
+---
+
+A question:
+
+Q: How do mathematicians categorize non-linearly-separable data?
+
+A: Munge the data until it's linearly separable, thus reducing it to an earlier slide.
+
+Seriously. The munging is done using what are known as "kernel methods".
+
+---
+
+Kernel Methods
+
+<ul>
+<li>Functions that munge data</li>
+<li>Very faintly magical (because i have no idea how they were derived)</li>
+<li>Require some skill to choose the right one for the problem</li>
+<ul>
+
+---
+
+Kernel Methods + Support Vectors = Support Vector Machines
+
+---
+
+In Perl:
+
+Algorithm::SVM - bindings to libsvm
+
+(Also wrapped by AI::Categorizer)
+